

Best Practices for Designing Efficient
Tableau Workbooks
Third Edition

Alan Eldridge

Tableau Software

12 July 2015

2

Foreword
Once again, I would like to acknowledge that this document is a distillation of materials written by many

authors. All I have done is to bring it together into a single document and try to apply some structure.

Many people reading this will recognise their fingerprints across sections (in fact some will recognise

entire swathes of text). To all of you I give thanks because without your excellent work and lack of

ŎƻǇȅǊƛƎƘǘ ƛƴŦǊƛƴƎŜƳŜƴǘ ŎƭŀƛƳǎ LΩŘ ǎǘƛƭƭ ōŜ ǊŜǎŜŀǊŎƘƛƴƎ ŀƴŘ ǿǊƛǘƛƴƎΦ

This document has been updated to reflect the capabilities of Tableau 9.0. Future releases of Tableau

will provide new features and capabilities that may change some of these guidelines.

3

Contents
Foreword ... 2

What is efficiency? .. 5

Why do we care? .. 5

The laws of physics ... 5

What is Tableau good for? .. 6

What is Tableau not really good for? .. 7

Is it the data connection/data source? ... 9

General advice .. 9

Files ... 10

Relational .. 11

OLAP .. 14

Big Data ... 14

Cloud ... 15

Data Server .. 17

Extracts .. 18

Data preparation ... 25

Is it the query? .. 26

Where can I find the queries? ... 26

Under the covers improvements .. 28

Caching .. 32

Joins .. 34

Blending .. 34

Custom SQL ... 38

Alternatives to custom SQL ... 39

Filters... 40

Is it the calculations?... 48

Basic and aggregate calculations .. 48

Table calculations .. 49

Level of detail expressions .. 49

Calculations vs. native features .. 51

Impact of data types ... 51

Performance techniques ... 52

4

Is it the workbook? ... 56

Design approaches - bad vs. good .. 56

Reduce the complexity ... 58

Getting to know your data .. 61

Is it a Desktop vs. Server thing? .. 63

General guidelines .. 63

Monitoring Tableau Server ... 64

Is it environmental factors? .. 66

General guidelines .. 66

5

What is efficiency?
¢ƘŜǊŜ ŀǊŜ ǎŜǾŜǊŀƭ ŦŀŎǘƻǊǎ ǘƘŀǘ ƳŀƪŜ ŀ ǿƻǊƪōƻƻƪ άŜŦŦƛŎƛŜƴǘέΦ {ƻƳŜ ƻŦ ǘƘŜǎŜ ŦŀŎǘƻǊǎ ŀǊŜ ǘŜŎƘƴƛŎŀƭ ŀƴŘ

some more user-focused but in general an efficient workbook is:

¶ ! ǿƻǊƪōƻƻƪ ǘƘŀǘ ǘŀƪŜǎ ŀŘǾŀƴǘŀƎŜ ƻŦ ǘƘŜ άǇǊƛƴŎƛǇƭŜǎ ƻŦ Ǿƛǎǳŀƭ ŀƴŀƭȅǎƛǎέ ǘƻ effectively communicate

the message of the author and the data, possibly by engaging the user in an interactive

experience.

¶ A workbook that responds in a timely fashion. This can be a somewhat subjective measure, but in

general we would want the workbook to provide an initial display of information and to respond

to user interactions within a couple of seconds.

The first section of this document focuses on the first point and is mostly about workbook design. The

second section then focuses on the factors that affect workbook performance. As you will discover there

are many factors that contribute to workbook performance, including:

¶ the data connection and underlying data source;

¶ the query;

¶ the calculations;

¶ the visualisation design;

¶ some differences between Tableau Desktop and Server;

¶ other environmental factors such as hardware configuration and capacity.

Why do we care?
In our extensive experience, most performance problems that customers encounter are workbook

related. If we can fix these ς or better yet, through education prevent them in the first place ς then we

can fix the problems.

If you are working with small data volumes then many of these recommendations are not critical. You

can just brute-force your way through the problem. However, when you are dealing with hundreds of

millions of records the effect of poor workbook design is amplified and you must give more thought to

the guidance in this whitepaper.

Of course, practice makes perfect and following these guidelines for all workbooks is recommended.

Remember, your design is not complete until you have tested your workbook over the expected

production data volumes.

The laws of physics
Before we dive into the technical details of how various features affect the performance of workbooks,

there are three basic tenets that will help you author efficient dashboards and views:

If it isn't fast in the data source, it won't be fast in Tableau.
If your Tableau workbook is based on a slow running query then your workbook will also be slow. In the

following sections we will identify tuning tips for your databases to help improve the time it takes for

6

ǉǳŜǊƛŜǎ ǘƻ ǊǳƴΦ !ŘŘƛǘƛƻƴŀƭƭȅΣ ǿŜΩƭƭ ŘƛǎŎǳǎǎ Ƙƻǿ ¢ŀōƭŜŀǳΩǎ Ŧŀǎǘ Řŀǘŀ ŜƴƎƛƴŜ Ŏŀƴ ōŜ ǳǎŜŘ ǘƻ ƛƳǇǊƻǾŜ ǉǳŜǊȅ

performance.

If it isn't fast in Tableau Desktop, it won't be fast in Tableau Server.
! ǿƻǊƪōƻƻƪ ǘƘŀǘ ǇŜǊŦƻǊƳǎ ǎƭƻǿƭȅ ƛƴ ¢ŀōƭŜŀǳ 5ŜǎƪǘƻǇ ǿƻƴΩǘ ƎŜǘ ŀƴȅ ŦŀǎǘŜǊ ōȅ ǇǳōƭƛǎƘƛƴƎ ƛǘ ǘƻ ¢ŀōƭŜŀǳ

Server. In general, workbooks will perform slightly slower on Tableau Server because

¶ there are multiple users all sharing the server resources to generate workbooks simultaneously;

and

¶ the server has to do the work to render the dashboards and charts rather than this being done

on the client workstation.

You should invest your initial efforts tuning your workbook in Tableau Desktop before you start looking

to tune the performance in Tableau Server.

¢ƘŜ ŜȄŎŜǇǘƛƻƴ ǘƻ ǘƘƛǎ ǊǳƭŜ ƛǎ ƛŦ ¢ŀōƭŜŀǳ 5ŜǎƪǘƻǇ ƛǎ ŜƴŎƻǳƴǘŜǊƛƴƎ ǊŜǎƻǳǊŎŜ ƭƛƳƛǘǎ ǘƘŀǘ ŀǊŜƴΩǘ ǇǊŜǎŜƴǘ ƻƴ ǘƘŜ

server ς e.g. your PC does not have enough RAM to support the data volume you are analysing. Some

ǳǎŜǊǎ ŜƴŎƻǳƴǘŜǊ ǎƭƻǿ ǇŜǊŦƻǊƳŀƴŎŜ ƻǊ ŜǾŜƴ άƻǳǘ ƻŦ ƳŜƳƻǊȅέ ŜǊǊƻǊǎ ǿƘŜƴ ǿƻǊƪƛƴƎ ǿƛǘƘ ŀ Řŀǘŀ ǎŜǘ ƻƴ

their low-spec, 2GB RAM workstation, but find performance of the published workbook to be acceptably

fast because the server has far more memory and processing power.

A quick note at this point ς throughout this document we refer to Tableau Server but in most

places the guidance is also appropriate for Tableau Online if you prefer to use our hosted

solution over an on-premises deployment. The obvious exceptions are points on tweaking/tuning

server configuration parameters and on installing/updating software on the server tier ς in the

SaaS world these are being looked after for you!

Everything in moderation!
As with all things in liŦŜΣ ǘƻƻ ƳǳŎƘ ƻŦ ŀ ƎƻƻŘ ǘƘƛƴƎ Ŏŀƴ ōŜ ōŀŘΦ 5ƻƴΩǘ ǘǊȅ ǘƻ Ǉǳǘ ŀōǎƻƭǳǘŜƭȅ ŜǾŜǊȅǘƘƛƴƎ ƛƴǘƻ

a single, monolithic workbook. While a Tableau workbook can have 50 dashboards, each with 20 chart

objects, talking to 50 different data sources, it will almost certainly perform slowly.

If you find yourself with a workbook like this, consider breaking it into several separate files. This is easy

to do ς since Tableau 8.1 you can simply copy dashboards between workbooks and Tableau will bring all

the associated worksheets and data sources. If your dashboards are overly complex, consider simplifying

ǘƘŜƳ ŀƴŘ ǳǎƛƴƎ ƛƴǘŜǊŀŎǘƛƻƴǎ ǘƻ ƎǳƛŘŜ ǘƘŜ ŜƴŘ ǳǎŜǊǎ ŦǊƻƳ ǾƛŜǿ ǘƻ ǾƛŜǿΦ wŜƳŜƳōŜǊΣ ǿŜ ŘƻƴΩǘ ǇǊƛŎŜ ƻǳǊ

software by the document so feel free to spread the data out a little.

What is Tableau good for?
At Tableau Software, we seek to change how people view, interact with, and understand data. As a

result, we do not attempt to deliver the same kind of experience as traditional enterprise BI platforms.

Tableau is at its best when used to create workbooks that are:

¶ Visual ς there is a mountain of evidence that shows the most effective way for humans to

ǳƴŘŜǊǎǘŀƴŘ ƭŀǊƎŜΣ ŎƻƳǇƭŜȄ ǎŜǘǎ ƻŦ Řŀǘŀ ƛǎ ǘƘǊƻǳƎƘ Ǿƛǎǳŀƭ ǊŜǇǊŜǎŜƴǘŀǘƛƻƴΦ ¢ŀōƭŜŀǳΩǎ ŘŜŦŀǳƭǘ

7

behaviour is to present data using charts, diagrams and dashboards. Tables and crosstabs have

their place (and are supported) and we will talk more on how to best use them later.

¶ Interactive ς Tableau documents are primarily designed for interactive delivery to users, either

on their desktops, over the web or on a mobile device. Unlike other BI tools that primarily

produce print-focused output (either to actual paper or to a document such as a PDF), the focus

is on creating rich, interactive experiences that allow users to explore data and be guided

through business questions.

¶ Iterative ς discovery is an inherently cyclical process. Tableau is designed to speed the cycle from

question to insight to question so that users can quickly develop a hypothesis, test it with

available data, revise that hypothesis, test it again, and so on.

¶ Fast ς historically the BI process has been slow. Slow to install and configure software, slow to

make data available for analysis and slow to design and implement documents, reports,

dashboards, etc. Tableau allows users to install, connect and develop documents faster than ever

before ς in many cases reducing the time to produce an answer from months or weeks to hours

or minutes.

¶ Simple ς traditional enterprise BI tools are often beyond the capability of most business users,

either through cost or complexity. In many cases, users need the assistance of IT or a power user

to help create the queries and documents they want. Tableau provides an intuitive interface for

non-technical users to query and analyse complex data without needing them to become

database or spreadsheet experts.

¶ Beautiful ς they say beauty is in the eye of the beholder, but when it comes to visual

ŎƻƳƳǳƴƛŎŀǘƛƻƴ ǘƘŜǊŜ ŀǊŜ ōŜǎǘ ǇǊŀŎǘƛŎŜǎ ǘƻ ōŜ ŦƻƭƭƻǿŜŘΦ ¢ƘǊƻǳƎƘ ŦŜŀǘǳǊŜǎ ǎǳŎƘ ŀǎ ά{Ƙƻǿ aŜέΣ

Tableau guides non-technical users to create effective, understandable charts based on the data

being used.

¶ Ubiquitous ς increasingly, users are no longer creating documents for a single delivery platform.

Users need to view and interact with data on their desktops, over the web, on mobile devices,

embedded in other applications and documents, and more. Tableau allows a single document to

be published and then used across all these platforms without any porting or redesign.

What is Tableau not really good for?
¢ŀōƭŜŀǳ ƛǎ ŀ ǊƛŎƘ ŀƴŘ ǇƻǿŜǊŦǳƭ ǘƻƻƭ ōǳǘ ƛǘΩǎ ƛƳǇƻǊǘŀƴǘ ǘƻ ǳƴŘŜǊǎǘŀƴŘ ŀǘ ǘƘŜ ǎǘŀǊǘ ǘƘŀǘ ǘƘŜǊŜ ŀǊŜ ǎƻƳŜ

problŜƳǎ ŦƻǊ ǿƘƛŎƘ ƛǘ ƛǎ ǇǊƻōŀōƭȅ ƴƻǘ ǘƘŜ ōŜǎǘ ǎƻƭǳǘƛƻƴΦ ¢Ƙƛǎ ŘƻŜǎƴΩǘ ƳŜŀƴ ƛǘ ŎŀƴΩǘ Řƻ ǘƘŜǎŜ ǘƘƛƴƎǎ ς

Tableau can be coaxed to perform many tasks that were not in its original design specification. What we

mean is that these are not the types of problems Tableau was developed to solve and therefore if you

pursue them the effort/reward ratio will likely be unfavourable and the resulting solution may perform

poorly or inflexibly.

We suggest you consider revisiting your requirements or consider another approach if:

¶ You need a document that has been designed for paper, not the screen. By this, we mean if you

have a need to control complex page layouts, need features such as page, section and group

headers/footers, or need precise WYSIWYG formatting. Tableau can produce multi-page reports

but they lack the level of format control that is available in dedicated, banded-style reporting

tools.

8

¶ You need a complex push-delivery mechanism for documents with personalisation (also called

άōǳǊǎǘƛƴƎέύ ǎŜƴǘ Ǿƛŀ ƳǳƭǘƛǇƭŜ ŘŜƭƛǾŜǊȅ modes. Tableau can be used to create push-delivery

systems but this is not a native feature of Tableau. It requires development of a custom solution

built around the TABCMD utility, or the introduction of 3rd party solutions such as Push

Intelligence from Metric Insights1. Tableau Server includes the concept of report subscriptions

but this is a per-user pull model vs. report bursting.

¶ The primary use case for the reader is to export the data to another format (often a CSV or Excel

file). This often means a tabular report with many rows of detailed data. To be clear, Tableau

does allow users to export data from a view or dashboard to Excel ς either at a summary or detail

level. However, when the primary use case is to export it means this is an ersatz extract-

transform-load (ETL) process. There are much more efficient solutions than a reporting tool to

achieve this.

¶ You need highly complex, crosstab-style documents that perhaps mirror existing spreadsheet

reports with complex sub-totalling, cross-referencing, etc. Common examples here are financial

reports such as P&L, balance sheet, etc. Additionally, there may be the need for scenario

modelling, what-if analysis and even write-back of assumption data. If the underlying granular

data is not available or if thŜ ǊŜǇƻǊǘ ƭƻƎƛŎ ƛǎ ōŀǎŜŘ ƻƴ άŎŜƭƭ ǊŜŦŜǊŜƴŎŜǎέ ǊŀǘƘŜǊ ǘƘŀƴ ǊƻƭƭƛƴƎ ǳǇ

records to totals then it might be appropriate to continue using a spreadsheet for this style of

report.

1 Push Intelligence for Tableau - http://bit.ly/1HACxul

http://bit.ly/1HACxul

9

Is it the data connection/data source?
One of the powerful features of Tableau is its ability to connect to data across many different platforms.

Broadly speaking these platforms can be characterised as one of the following:

¶ File-based data sources ς such as Excel and CSV;

¶ Relational database data sources ς such as Oracle, Teradata and SQL Server, as well as specialised

analytic appliances such as HP Vertica, IBM Netezza, etc;

¶ OLAP data sources ς such as Microsoft Analysis Services and Oracle Essbase;

¶ ά.ƛƎ Řŀǘŀέ Řŀǘŀ ǎƻǳǊŎŜǎ ς such as Hadoop;

¶ Cloud-based data sources ς such as Salesforce, Google, etc.

Each type of data source has its own set of advantages and disadvantages, and is treated uniquely.

Note that Tableau Desktop is supported on both Windows and Mac OS X and the set of supported data

sources on Mac is not the same as on Windows. Minimising the differences between the platforms is

something Tableau will work towards but today there are some data sources that are only supported on

one platform.

General advice

Use native drivers
As of version 9, Tableau supports native connectivity to over 40 different data sources. This means

Tableau has implemented techniques, capabilities and optimizations specific to these data sources.

Engineering and testing activities for these connections ensure they are the most robust Tableau has to

offer.

Tableau also supports general-purpose ODBC for accessing data sources beyond the list of native

connectors. As a publicly defined standard, many database vendors make ODBC drivers available for

their databases and Tableau can also use these ODBC drivers to connect to data. There can be

differences in how each database vendor interprets or implements capabilities of the ODBC standard. In

some cases Tableau will recommend or require you to create a data extract to continue working with a

particular driver. There will also be some ODBC drivers and databases that Tableau is unable to connect

to.

If there is a native driver for the data source you are querying you should use this over the ODBC

connections as it will generally provide better performance.

Test as close to the data as possible
As stated earlier, a general principal is that if a data source performs queries slowly then the experience

in Tableau will be slow. A good way to test the raw performance of the data source is to (if possible)

install Tableau Desktop on the machine where the data source resides and to run some queries. This will

eliminate factors such as network bandwidth and latency from the performance and allow you to better

understand the raw performance of the query in the data source. Additionally, using the localhost name

for the data source instead of the DNS name can help determine if environmental factors such as slow

name resolution or proxy servers are adding to the poor performance.

10

Files
This category covers all file-based data formats ς text files such as CSV, Excel spreadsheets and MS

Access being the most common, however this also includes data files from statistical platforms SPSS, SAS

and R. Business users often use data in this format because it is a common way to get data out of

άƎƻǾŜǊƴŜŘέ Řŀǘŀ ǎŜǘǎ ς either by running reports or performing a query extract.

In general it is best practice to import file-based data sources into the Tableau fast data engine. This will

make queries perform much faster and also results in a much smaller file to store the data values.

However, if the file is small or if you need a live connection to the file to reflect changing data you can

connect live.

Shadow extracts
In Tableau 9 and later when you connect to non-legacy Excel/text or statistical files, Tableau

transparently creates an extract file as part of the connection process. This is called a shadow extract

and it makes working with the data much faster than if you were to directly query the file.

You may notice that the first time you use a large file it can take several seconds to load the data

preview pane. This is because Tableau is extracting the data from the file and writing it to a shadow

extract file. By default these files are created in

C: \ Users \ <username> \ AppData \ Local \ Tableau \ Caching \ TemporaryExtracts with a hashed name

based on the pathname and date last modified of the data file. Tableau keeps shadow extracts for the

five most-recently used file data sources in this directory, deleting the least recently used file when a

new one is created. If you subsequently reuse a file that has a shadow extract Tableau simply opens the

extract file and the data preview appears almost instantly.

Although shadow extract files contain underlying data and other information similar to the standard

Tableau extract, shadow extract files are saved in a different format (with a .ttde extension), which

means that they cannot be used the same way Tableau extracts are.

Legacy connectors for Excel and text files
Prior to Tableau 8.2 connections to Excel and text files made use of aƛŎǊƻǎƻŦǘΩǎ W9¢ data engine driver. In

Tableau 8.2 and later we have introduced a native driver for these files that provides better

performance and works with larger, more complex files. However there are some situations in which

you might prefer to use the legacy drivers ς e.g. if you want to use custom SQL to union data together

from multiple text files. In these scenarios users have the option to revert back to the legacy JET driver.

Access to MS Access files still uses the JET driver.

A detailed listing of the differences between the two drivers can be found here:

http://tabsoft.co/1HACvmj

Note that the JET drivers are not available on Mac OS and therefore Tableau Desktop for Mac does not

support reading MS Access files, nor does it provide the legacy connection option for Excel and text files.

http://tabsoft.co/1HACvmj

11

Relational
Relational data sources are the most common form of data source for Tableau users and Tableau

provides native drivers for a wide selection of platforms. These can be row or column based, personal or

enterprise, and accessed via native drivers or generic ODBC. This category technically also includes Map-

Reduce data sources as they are accessed through SQL access layers like Hive or Impala, however we will

ŘƛǎŎǳǎǎ ǘƘŜƳ ƛƴ ƳƻǊŜ ŘŜǘŀƛƭ ƛƴ ǘƘŜ άōƛƎ Řŀǘŀέ ǎŜŎǘƛƻƴ ōŜƭƻǿΦ

There are many internal factors that impact query speed in a relational database systems (RDBMS).

Changing or tuning these will usually require assistance from your DBA, but can yield significant

performance improvements.

Row-based vs. column-based
RDBMS systems come in two main flavours ς row-based or columns-based. Row-based storage layouts

are well-suited for OLTP-like workloads which are more heavily loaded with interactive transactions.

Column-based storage layouts are well-suited for analytic workloads (e.g., data warehouses) which

typically involve highly complex queries over large sets of data.

Today, many high performing analytic solutions are based on column-based RDBMS and you may find

your queries perform faster if you use such a solution. Examples of column-based databases supported

by Tableau are Actian Vector, Amazon Redshift, HP Vertica, IBM Netezza, ParAccel, Pivotal Greenplum,

SAP HANA and SAP Sybase IQ.

Indexes
Correct indexing on your database is essential for good query performance:

¶ Make certain you have indexes on columns that are part of table joins.

¶ Make certain you have indexes on columns used in filters.

¶ Be aware that using discrete date filters in some databases can cause queries to not use indexes

ƻƴ ŘŀǘŜ ŀƴŘ ŘŀǘŜǘƛƳŜ ŎƻƭǳƳƴǎΦ ²ŜΩƭƭ ŘƛǎŎǳǎǎ ǘƘƛǎ ŦǳǊǘƘŜǊ ƛƴ ǘƘŜ ŦƛƭǘŜǊ ǎŜŎǘƛƻƴΣ ōǳǘ ǳǎƛƴƎ ŀ ǊŀƴƎŜ

date filter will ensure the date index is used. For example, instead of using

YEAR([DateDim])=2010 express the filter as [DateDim] >= #2010 - 01- 01# and [DateDim] <=

#2010 - 12- 31#) .

¶ Ensure you have statistics enabled on your data to allow the query optimiser to create high-

quality query plans.

Many DBMS environments have management tools that will look at a query and recommend indexes

that would help.

NULLS
Having NULL values in dimension columns can reduce the effectiveness of indexes in some databases.

Consider an example where you have a dimension with incomplete data and some records contain NULL

values. If you want to exclude those NULL records the NOT ISNULL filter can (in some cases) cause a full

table scan which is much slower than an index scan.

Where possible, define your dimension columns as NOT NULL.

12

Referential Integrity
When you join multiple tables in a data source Tableau has a nifty (and generally invisible to the user)

ŦŜŀǘǳǊŜ ŎŀƭƭŜŘ άƧƻƛƴ ŎǳƭƭƛƴƎέΦ {ƛƴŎŜ Ƨƻƛƴǎ Ŏƻǎǘ ǘƛƳŜ ŀƴŘ ǊŜǎƻǳǊŎŜǎ ǘƻ ǇǊƻŎŜǎǎ ƻƴ ǘƘŜ ŘŀǘŀōŀǎŜ ǎŜǊǾŜǊΣ ǿŜ

ǊŜŀƭƭȅ ŘƻƴΩǘ ǿŀƴǘ ǘƻ ŜƴǳƳŜǊŀǘŜ every join that we declared in our data source all the time. Join culling

allows us to query only the relevant tables instead of all tables defined in your join.

Consider the following scenario where we have joined multiple tables in a small star schema:

With join culling, double-clicking on the Sales measure generates the following query:

SELECT SUM([OrdersFact].[Sales]) AS [sum:Sales:ok]

FROM [dbo].[OrdersFact] [OrdersFact]

GROUP BY ()

Without it, a far less efficient query is generated:

SELECT SUM([OrdersFact].[Sales]) AS [sum:Sales:ok]

FROM [dbo].[OrdersFact] [OrdersFact]

 INNER JOIN [dbo].[CustomerDim] [CustomerDim]

 ON ([OrdersFact].[Customer ID] = [CustomerDim].[Customer ID])

 INNER JOIN [dbo].[DeliveryDim] [DeliveryDim]

 ON ([Orde rsFact].[Delivery ID] = [DeliveryDim].[Delivery ID])

 INNER JOIN [dbo].[LocationDim] [LocationDim]

 ON ([OrdersFact].[Place ID] = [LocationDim].[Place ID])

 INNER JOIN [dbo].[ProductDim] [ProductDim]

 ON ([OrdersFact].[Product ID] = [ProductDim]. [Product ID])

 INNER JOIN [dbo].[TimeDim] [TimeDim]

 ON ([OrdersFact].[Date ID] = [TimeDim].[Date ID])

GROUP BY ()

All the dimension tables must be joined in order to ensure that correct measure sums are calculated

from the start. For example, if our fact table contained data for 2008-2012 but the time dimension table

only had values for 2010-2012, the result SUM([Sales]) would potentially change depending on whether

the time table is included.

13

Prior to Tableau 8.1, join culling only occurs if referential integrity rules are enforced in the source DBMS

- ǎƻƳŜǘƛƳŜǎ ǊŜŦŜǊǊŜŘ ǘƻ ŀǎ άƘŀǊŘέ ǊŜŦŜǊŜƴǘƛŀƭ ƛƴǘŜƎǊƛǘȅΦ IƻǿŜǾŜǊ Ƴŀƴȅ ŎǳǎǘƻƳŜǊǎ ƘŀǾŜ Řŀǘŀ ǎƻǳǊŎŜǎ

where referential integrity is enforced either at the application layer or through an ETL process - this is

ǊŜŦŜǊǊŜŘ ǘƻ ŀǎ άǎƻŦǘέ ǊŜŦŜǊŜƴǘƛŀƭ ƛƴǘŜƎǊƛǘȅΦ Lƴ ¢ŀōƭŜŀǳ уΦм ŀƴŘ ƭŀǘŜǊΣ ǳǎŜǊǎ Ŏŀƴ ǘŜƭƭ ¢ŀōƭŜŀǳ ǘƘŀǘ ǎƻŦǘ

referential integrity is in place and that join culling can be safely used.

Note that while Tableau can use either hard or soft referential integrity it is often much better to use

hard referential integrity because the database can do join culling too. For more information, see the

following series of articles by Russell Christopher on his Tableau Love blog:

http://bit.ly/1HACmPV

http://bit.ly/1HACqPn

Partitioning
Partitioning a database improves performance by splitting a large table into smaller, individual tables

(called partitions or shards). This means queries can run faster because there is less data to scan and/or

there are more drives to service the IO. Partitioning is a recommended strategy for large data volumes

and is transparent to Tableau.

Partitioning works well for Tableau if it is done across a dimension ς e.g. time, region, category, etc. ς

that is commonly filtered so that individual queries only have to read records within a single partition.

Be aware that for some databases, άǊŀƴƎŜ ƻŦ dateέ filters (not discrete filters) are necessary to ensure

the partition indexes are correctly used ς otherwise a full table scan can result with extremely poor

performance.

Temp Tables
There are many operations in Tableau that can result in the use of temp tables ς e.g. creating ad-hoc

groups and sets, applying context filters, and performing data blending. It is recommended that you

grant your users permission to create and drop temp tables, and ensure your environment has sufficient

spool space for their queries they are running.

http://bit.ly/1HACmPV
http://bit.ly/1HACqPn

14

OLAP
Tableau supports several OLAP data sources:

¶ Microsoft Analysis Services

¶ Microsoft PowerPivot (both PowerPivot for Excel and PowerPivot for SharePoint)

¶ Oracle Essbase

¶ SAP BW

¶ Teradata OLAP

There are functional differences when connecting to OLAP versus relational due to the underlying

language differences between MDX/DAX and SQL. The key points to keep in mind are that both have the

same user interface in Tableau, the same visualisations, and the same expression language for

calculated measures. The differences are mostly to do with metadata (how and where it is defined),

filtering, how totals and aggregations work and how the data source can be used in data blending.

More details on the differences using Tableau over relational data sources vs. OLAP data sources can be

found in the following knowledge base article:

http://tabsoft.co/1HAF47P

SAP BW data extracts
{ƛƴŎŜ ¢ŀōƭŜŀǳ уΦм ȅƻǳ Ŏŀƴ ŜȄǘǊŀŎǘ Řŀǘŀ ŦǊƻƳ {!t .² ŎǳōŜǎ ƛƴǘƻ ¢ŀōƭŜŀǳΩǎ Řŀǘŀ Ŝngine (note ς this

requires a special keycode that can be obtained from Tableau). Tableau retrieves leaf level nodes (not

drill-through level data) and makes them into a relational data source. Since multidimensional to

relational transformation does not preserve all cube structures, switching back and forth between

extract and live connection freely without impacting the state of your visualisation is not supported for

cube extracts. You will need to make your choice before you start building up your viz. However you

ŘƻƴΩǘ ƘŀǾŜ ǘƻ ŘŜŎƛŘŜ ƻƴ ŜǾŜǊȅǘƘƛƴƎ ǳǇŦǊƻƴǘΦ ¸ƻǳ Ŏŀƴ ǎǿƛǘŎƘ ōŜǘǿŜŜƴ ŀƭƛŀǎ ƻǇǘƛƻƴǎ όƪŜȅΣ ƭƻƴƎ ƴŀƳŜ ŜǘŎΦύ

after the extraction.

More detail on creating SAP BW extracts can be found here:

 http://tabsoft.co/1SuYf9d

Big Data
Big data is a heavily overloaded term in the world of data analysis, however in this document we are

particularly using it to refer to platforms that are based on Hadoop. In Tableau 9.0, there are four

supported Hadoop distributions that support Hive and/or Impala connections:

¶ Amazon EMR

o HiveServer

o HiveServer2

o Impala

¶ Cloudera Hadoop

o HiveServer

o HiveServer2

http://tabsoft.co/1HAF47P
http://tabsoft.co/1SuYf9d

15

o Impala

¶ Hortonworks Hadoop Hive

o HiveServer

o HiveServer2

o Hortonworks Hadoop Hive

¶ MaPR Hadoop Hive

o HiveServer

o HiveServer2

¶ Spark SQL

o SharkServer

o SharkServer2

o SparkThriftServer

Hive acts as a SQL-Hadoop translation layer, translating the query into MapReduce which is then run

over HDFS data. Impala executes the SQL statement directly on HDFS data (bypassing the need for

MapReduce). Tableau also supports Spark SQL, an open source processing engine for big data that can

perform up to 100x faster than MapReduce by running in-memory rather than on-disk.

Impala is generally much faster than Hive and Spark is proving to be faster still.

Even with these additional components, Hadoop is often not sufficiently responsive for analytical

queries like Tableau creates. Tableau data extracts are often used to improve query response times -

more information on extracts and how they can be usŜŘ ǿƛǘƘ άōƛƎ Řŀǘŀέ ƛǎ ŘƛǎŎǳǎǎŜŘ ƭŀǘŜǊΦ

Further details for improving performance against Hadoop data sources can be found here:

 http://tabsoft.co/1BkFo62

Cloud
Tableau currently supports the following cloud data sources:

¶ Salesforce.com

¶ Google Analytics

¶ oData (including Windows Azure Marketplace DataMarket)

This first group of sources read a set of data records from a web service and load them into a Tableau

Řŀǘŀ ŜȄǘǊŀŎǘ ŦƛƭŜΦ ά/ƻƴƴŜŎǘ ƭƛǾŜέ ƛǎ ƴƻǘ ŀƴ ƻǇǘƛƻƴ for these data sources, however the extract file can be

refreshed to update the data it contains. Using Tableau Server, this update process can be automated

and scheduled.

¶ Amazon Redshift

¶ Amazon RDS

¶ Google BigQuery

¶ Microsoft Azure SQL Data Warehouse

http://tabsoft.co/1BkFo62

16

While these are also cloud data sources they operate like a relational data source and allow both live

connections and extracts. We will not cover them further here (refer to the relational data source

section above) other than to point out you will generally want to keep these as live connections to avoid

transferring large volumes of data from the cloud.

Salesforce
When connecting to Salesforce the following limitations of the connector need to be considered:

¢ƘŜǊŜ ƛǎ ƴƻ άŎƻƴƴŜŎǘ ƭƛǾŜέ ƻǇǘƛƻƴ

There are several reasons we chose to go with extract-only instead of a live connection, including:

¶ Performance ς live analytic queries against Salesforce are (in general) slow.

¶ API quotas - Hitting Salesforce live too often can cause an account to be suspended if the daily

quota is hit. By extracting, we make efficient use of APIs to minimize the number of API calls

required and avoid hitting limits. To maintain optimum performance and ensure that the

Force.com API is available to all of their customers, Salesforce.com balances transaction loads by

imposing two types of limits: Concurrent API Request Limits (http://sforce.co/1f19cQa)

and Total API Request Limits (http://sforce.co/1f19kiH).

The initial extract can be very slow

The first time you extract the data out of Salesforce, it could take a while based on table size, force.com

load, etc. This is because objects are downloaded in their entirety.

Join options are limited

When choosing the multiple table option, be aware that you can only join objects on their PK/FK keys

(left and inner join only).

You cannot pre-filter data

There is no ability to pre-filter the data through the Salesforce connector. If this requirement is critical

for you, you could use a third party Salesforce ODBC driver (for example from Simba, or DataDirect) that

supports live connections. You could then take an extract against this connection.

DBAmp also provide a solution which allows you to dump Salesforce data into SQL Server database. You

could then connect to Tableau via the SQL Server connector.

Formula columns cannot be migrated over

If you have calculated fields, you will need to recreate them in Tableau after you extract the data.

There is a 10k character limit on queries

The Force.com API restricts queries to 10,000 total characters. If you are connecting to one or more

tables that are very wide (lots of columns with potentially long column names), you may hit that limit

when trying to create an extract. In these cases, you should select fewer columns to reduce the size of

the query. In some cases, Salesforce.com may be able to increase this query limit for your company.

Contact your Salesforce administrator to learn more.

Google Analytics
Google Analytics (GA) will sample your data when a report includes a large number of dimensions or a

large amount of data. If your data for a particular web property within a given date range exceeds (for a

http://sforce.co/1f19cQa
http://sforce.co/1f19kiH

17

regular GA account) 50,000 visits, GA will aggregate the results and return a sample set of that data.

When GA has returned a sample set of that data to Tableau, Tableau will display the following message

on the bottom right-corner of a view:

άDƻƻƎƭŜ !ƴŀƭȅǘƛŎǎ ǊŜǘǳǊƴŜŘ ǎŀƳǇƭŜŘ ŘŀǘŀΦ {ŀƳǇƭƛƴƎ ƻŎŎǳǊǎ ǿƘŜƴ ǘƘŜ ŎƻƴƴŜŎǘƛƻƴ ƛƴcludes a large

number of dimensions or a large amount of data. Refer to the Google Analytics documentation to learn

ƳƻǊŜ ŀōƻǳǘ Ƙƻǿ ǎŀƳǇƭƛƴƎ ŀŦŦŜŎǘǎ ȅƻǳǊ ǊŜǇƻǊǘ ǊŜǎǳƭǘǎΦέ

It is important to know when your data is being sampled because aggregating certain sample sets of

data can cause highly skewed and inaccurate inferences. For example, suppose you aggregate a sample

set of data that describes an unusual category of your data. Inferences on the aggregated sample set

may be skewed because there are an insufficient number of samples contained in that category. To build

GA views that allow you to make accurate inferences about your data, ensure that you have a large

enough sample within the category that you are making inferences about. The recommended minimum

sample size is 30.

For information about adjusting the GA sample size and more information about GA sampling, refer to

the GA documentation:

 http://bit.ly/1BkFoTG

To avoid sampling, there are two approaches to take:

¶ Run multiple GA reports at the session or hit level to break the data into unsampled chunks. You

ǿƻǳƭŘ ǘƘŜƴ ŘƻǿƴƭƻŀŘ ǘƘŜ Řŀǘŀ ǘƻ ŀƴ 9ȄŎŜƭ ŦƛƭŜ ŀƴŘ ǳǎŜ ¢ŀōƭŜŀǳΩǎ ŜȄǘǊŀŎǘ ŜƴƎƛƴŜ ǘƻ άŀŘŘ Řŀǘŀ

from data sourceΧέ ǘƻ ǊŜŀǎǎŜƳōƭŜ ǘƘŜ Řŀǘŀ ƛƴǘƻ ŀ ǎƛƴƎƭŜ ŘŀǘŀǎŜǘΦ

¶ Upgrade your GA to a Premium account ς this increases the number of records that can be

included in a report. This will make it much easier to chunk the data down for analysis. Looking

forward, Google has announced that they will be enabling GA Premium customers to export

their session and hit level data to Google BigQuery for further analysis. This would be a much

simpler approach as Tableau can connect directly to BigQuery.

Finally, note that the API that Tableau uses to query GA limits the query to a maximum of 7 dimensions

and 10 measures.

Data Server
²ƘƛƭŜ ƴƻǘ ŀ Řŀǘŀ ǎƻǳǊŎŜ ƛƴ ƛǘǎŜƭŦΣ ŀƴƻǘƘŜǊ ǿŀȅ ǘƻ ŎƻƴƴŜŎǘ ǘƻ Řŀǘŀ ǎƻǳǊŎŜǎ ƛǎ Ǿƛŀ ¢ŀōƭŜŀǳ {ŜǊǾŜǊΩǎ Řŀǘŀ

server. The data server supports both live connections as well as data extracts and provides several

advantages over standalone data connections:

¶ As the metadata is stored centrally on the Tableau Server it can be shared across multiple

workbooks and across multiple authors/analysts. The workbooks retain a pointer to the

centralised metadata definition and each time they are opened they check to see if there have

been any changes made. If so, the user is prompted to update the copy embedded in the

workbook. This means that changes to business logic only need to be made in one place and

they can then be propagated across all dependent workbooks.

http://bit.ly/1BkFoTG

18

¶ If the data source is a data extract, it can be used across multiple workbooks. Without the data

server, each workbook will contain its own local copy of the extract. This reduces the number of

redundant copies which in turn reduces the required storage space on the server as well as any

duplicate refresh processes.

¶ If the data source is a live connection, the drivers for the data source do not need to be installed

ƻƴ ŜǾŜǊȅ ŀƴŀƭȅǎǘΩǎ t/Σ ƻƴƭȅ ǘƘŜ ¢ŀōƭŜŀǳ {ŜǊǾŜǊΦ ¢ƘŜ Řŀǘŀ server acts as a proxy for queries from

Tableau Desktop.

One significant improvement in the data server in V9 is that it now supports the creation of temp tables.

This capability will significantly improve the performance of queries where there are filters, sets and ad-

hoc groups with large numbers of members. For example, the following query which is based on an ad-

hoc group of many points on a scatter plot will now be generated on the data server, just like it is in

Tableau Desktop:

SELECT [DimProduct].[ProductName] AS [ProductName],

 SUM([FactSales].[DiscountAmount]) AS [sum:DiscountAmount:ok],

 SUM([FactSales].[SalesAmount]) AS [sum:SalesAmount:ok],

 [t0].[Product Name (group)] AS [Product Name (group)]

FROM [dbo].[FactSales] [FactSales]

 INNER JOIN [dbo].[DimProduct] [DimProduct] ON ([FactSales].[ProductKey] =

[DimProduct].[ProductKey])

 INNER JOIN [#Tableau_5_3_Group] [t0] ON ([DimProduct].[ProductName] =

[t0].[ProductName])

GROUP BY [t0].[Product Name (group)],

 [DimProduct].[ProductName]

Extracts
So far we have discussed techniques for improving the performance of data connections where the data

remains in the original format. We call these live data connections and in these cases we are dependent

on the source data platform for both performance and functionality. In order to improve performance

ǿƛǘƘ ƭƛǾŜ ŎƻƴƴŜŎǘƛƻƴǎΣ ƛǘΩǎ ƻŦǘŜƴ ƴŜŎŜǎǎŀǊȅ ǘƻ ƳŀƪŜ ŎƘŀƴƎŜǎ ǘƻ ǘƘŜ Řŀǘŀ ǎƻǳǊŎŜ ŀƴŘ ŦƻǊ Ƴŀƴȅ ŎǳǎǘƻƳŜǊǎ

this is simply not possible.

!ƴ ŀƭǘŜǊƴŀǘƛǾŜ ŀǾŀƛƭŀōƭŜ ǘƻ ŀƭƭ ǳǎŜǊǎ ƛǎ ǘƻ ƭŜǾŜǊŀƎŜ ¢ŀōƭŜŀǳΩǎ Ŧŀǎǘ Řŀǘŀ engine and to extract data from the

source data system into a Tableau Data Extract. This is for most users the quickest and easiest way to

significantly improve the performance of a workbook over any data source.

An extract is:

¶ A persistent cache of data that is written to disk and reproducible;

¶ A columnar data store ς a format where the data has been optimised for analytic querying;

¶ Completely disconnected from the database during querying. In effect, the extract is a

replacement for the live data connection;

¶ Refreshable, either by completely regenerating the extract or by incrementally adding rows of

data to an existing extract;

¶ Architecture-aware ς unlike most in-memory technologies it is not constrained by the amount of

physical RAM available;

19

¶ Portable ς extracts are stored as files so can be copied to a local hard drive and used when the

user is not connected to the corporate network. They can also be used to embed data into

packaged workbooks that are distributed for use with Tableau Reader;

¶ Often much faster than the underlying live data connection.

Tom Brown at The Information Lab has written an excellent article explaining several use cases where

extracts provide benefit (make sure you also read the comments for additional examples from other

users):

 http://bit.ly/1F2iDnT

There is one important point to make about data extracts ς they are not a replacement for a data

warehouse, rather a complement. While they can be used to collect and aggregate data over time (i.e.

incrementally add data according to a periodic cycle) this should be used as a tactical, rather than long

term, solution. Incremental updates do not support update or delete actions to records that have

already been processed ς changing these requires a full reload of the extract.

Finally, extracts cannot be created over OLAP data sources such as SQL Server Analysis Services, or

Oracle Essbase. The exception to this rule is that you can create extracts from SAP BW (see the relevant

section above).

When to use extracts? When to use live connections?
[ƛƪŜ ŜǾŜǊȅǘƘƛƴƎΣ ǘƘŜǊŜΩǎ ŀ ǘƛƳŜ ŀƴŘ ŀ ǇƭŀŎŜ ŦƻǊ Řŀǘŀ ŜȄǘǊŀŎǘǎΦ ¢ƘŜ ŦƻƭƭƻǿƛƴƎ ŀǊŜ ǎƻƳŜ ǎŎŜƴŀǊƛƻǎ ǿƘŜǊŜ

extracts may be beneficial:

¶ Slow query execution - if your source data system is slow to process the queries being generated

by Tableau Desktop, creating an extract may be a simple way to improve performance. The

extract data format is inherently designed to provide fast response to analytic queries so in this

case you can think of the extract as a query acceleration cache. For some connection types this is

a recommended best practice (e.g. large text files, custom SQL connections) and some sources

will only work in this model (see the section on cloud data sources).

¶ Offline analysis - if you need to work with data while the original data source is not available (e.g.

you are disconnected from the network while travelling or working from home). Data extracts

are persisted as a file which can easily be copied to a portable device such as a laptop. It is a

simple matter to switch back and forth between an extract and a live connection if you move on

and off the network.

¶ Packaged workbooks for Tableau Reader/Online/Public - if you are planning to share your

workbooks for other users to open them in Tableau Reader or if you are planning to publish them

to Tableau Online or Public, you will need to embed the data into a packaged workbook file. Even

if the workbook uses data sources that can also be embedded (i.e. file data sources) data extracts

inherently provide a high level of data compression so the resulting packaged workbook is

significantly smaller.

¶ Additional functionality - for some data sources (e.g. file data sources via the legacy JET driver)

there are functions in Tableau Desktop that are not supported (e.g. median/count

distinct/rank/percentile aggregations, set IN/OUT operations, etc.). Extracting the data is a

simple way to enable these functions.

http://bit.ly/1F2iDnT

20

¶ Data security - if you wish to share a subset of the data from the source data system, you can

create an extract and make that available to other users. You can limit the fields/columns you

include as well as share aggregated data where you want users to see summary values but not

the individual record-level data.

Extracts are very powerful, but they are not a silver bullet for all problems. There are some scenarios

where using extracts might not be appropriate:

¶ Real-time data - because extracts are a point of time snapshot of data they would not be

appropriate if you need real-time data in your analysis. It is possible to automatically refresh

extracts using Tableau Server and many customers do this at intra-day frequencies but true real-

time data access would require a live connection.

¶ Massive data - if the volume of data you need to work with is massive (the definition of

άƳŀǎǎƛǾŜέ ǿƛƭƭ ǾŀǊȅ ŦǊƻƳ ǳǎŜǊ ǘƻ ǳǎŜǊ ōǳǘ ƎŜƴŜǊŀƭƭȅ ƛǘ ǿƛƭƭ ōŜ Ƴƛƭƭƛƻƴǎ ǘƻ ōƛƭƭƛƻƴǎ ƻŦ ǊŜŎƻǊŘǎύ ǘƘŜƴ

extracting this may not be practical. The resulting extract file may be excessively large or the

extract process may take many, many hours to complete. Note that there are a couple of

exceptions to this guideline. If you have a massive source data set but you are going to work over

a filtered, sampled and/or aggregated subset of this data, then using an extracts may actually be

a great idea. Generally speaking the Tableau extract engine was designed to work well for up to a

few hundred million records but this will be influenced by the shape and cardinality of your data.

¶ Pass-through RAWSQL functions - if your workbook uses pass-through functions these will not

work with a data extract.

¶ Robust user-level security - if you have a requirement for robustly-enforced, user-level security

then this needs to be implemented in the data source. If you have user-level filters applied at the

workbook level then these can always be removed by a user allowing them access to all data in

the extract. The exception to this guideline is if the extract has been published to Tableau Server

with data source filters defined and other users are accessing this extract via the data server.

Note - you will need to ensure that download permissions are revoked from users to ensure they

cannot bypass the enforced filters.

Creating extracts in Desktop
In most cases the initial creation of an extract is done in Tableau Desktop and is very simple. After you

have connected to your data, go to the Data menu and ŎƭƛŎƪ ά9ȄǘǊŀŎǘ 5ŀǘŀέ ς then accept the defaults on

the dialog box (although more on this later). Tableau will ask where you want to save the extract ς

choose any location to sŀǾŜ ǘƘŜ ŦƛƭŜΣ ŀƭǘƘƻǳƎƘ ¢ŀōƭŜŀǳ ǿƛƭƭ ǇǊƻōŀōƭȅ ŘƛǊŜŎǘ ȅƻǳ ǘƻǿŀǊŘǎ Ψaȅ ¢ŀōƭŜŀǳ

wŜǇƻǎƛǘƻǊȅ μ 5ŀǘŀǎƻǳǊŎŜǎΩ ǿƘƛŎƘ ƛǎ Ƨǳǎǘ ŦƛƴŜ ǘƻƻΗ

bƻǿ ǿŀƛǘ ŦƻǊ ǘƘŜ ŜȄǘǊŀŎǘ ǘƻ ōŜ ŎǊŜŀǘŜŘΣ Ƙƻǿ ƭƻƴƎ ȅƻǳΩƭƭ ǿŀƛǘ ŘŜǇŜƴŘǎ ƻƴ ǘƘŜ ŘŀǘŀōŀǎŜ ǘŜŎƘƴƻƭƻƎȅ ōŜƛƴƎ

used, network speed, data volumes, etc. It is also dependent on the speed and capacity of your

workstation as creating an extract is a memory and processor intensive activity.

¸ƻǳΩƭƭ ƪƴƻǿ ƛǘΩǎ ŘƻƴŜ ǿƘŜƴ ǘƘŜ Řŀǘŀ ǎƻǳǊŎŜ ƛŎƻƴ ŎƘŀƴƎŜǎ ς it will have another database icon behind it,

reprŜǎŜƴǘƛƴƎ ŀ ΨŎƻǇȅΩΣ ǿƘƛŎƘ ƛǎ ŜȄŀŎǘƭȅ ǿƘŀǘ ŀƴ ŜȄǘǊŀŎǘ ƛǎΦ

21

When you create an extract this way (via Tableau Desktop) the processing occurs on your workstation

and so you will need to ensure it has sufficient capacity to complete the task. Extract creation uses all

resource types ς CPU, RAM, disk storage, network I/O ς and processing large data volumes on a small PC

can result in errors if any are exhausted. It is recommended that large extracts be done on a suitable

workstation ς fast CPU with multiple cores, lots of RAM, fast I/O, etc.

The extract creation process requires temp disk space to write working files ς in Tableau 8.1 and earlier

it could require up to the square of the resulting extract file (e.g. a 100MB extract may require several

GB of temp space) but in Tableau 8.2 and later this has been reduced significantly and the process now

only needs up to 2x the final extract file size. This working space is allocated in the directory specified by

the TEMP environment variable (usually C: \ WINDOWS\ TEMP or

C: \ Users \ USERNAME\ AppData \ Local \ Temp). If this drive has insufficient space, point the environment

variable to a larger location.

If it is impossible (or just impractical) to do an initial extract process on a workstation, the following

workaround can be done to create an empty extract that is then published to Tableau Server. Create a

calculated field that has DateTrunc(ñminuteò, now()) in it. Then add it to the extract filters and

exclude the single value it shows ς be quick because you have a minute before this filter is no longer

valid. If you need longer just make the publishing interval wider (e.g. round to 5 mins or 10 mins or an

hour if you need). This will build an empty extract on your desktop. When you publish to server and

trigger the refresh schedule, it will populate the full extract since the timestamp we excluded is not the

same anymore.

Creating extracts using the data extract API
Tableau also provides an application programming interface (API) to enable developers to directly create

a Tableau Data Extract (TDE) file. Developers can use this API to generate extracts from on-premises

software and software-as-a-service. This API lets you systematically get data into Tableau when there is

not a native connector to the data source you are using.

This API is available for developers in Python and C/C++/Java on both Windows and Linux. You can find

more information on the API here:

http://tabsoft.co/1Sv1n55

http://tabsoft.co/1Sv1n55

22

Creating extracts using 3rd party tools
Many 3rd party tool developers have used the data extract API to add native TDE output to their

applications. These applications include analytic platforms like Adobe Marketing Cloud as well as ETL

tools like Alteryx and Informatica.

If you have complex data preparation requirements, tools like Alteryx and Informatica can be used to

efficiently perform the ETL stages and then directly output the prepared data into a TDE file for use in

Tableau Desktop.

Aggregate extracts
Using an aggregate extract can always imprƻǾŜ ǇŜǊŦƻǊƳŀƴŎŜΦ 9ǾŜƴ ƛŦ ȅƻǳΩǊŜ ƻƴ ¢ŜǊŀŘŀǘŀ ƻǊ ±ŜǊǘƛŎŀ ǿƛǘƘ

huge amounts of data, extracting data can provide an improvement, as long as you aggregate and filter

the data appropriately. For example, you can filter the data if you are concerned with only the most

recent data.

You can define the extract ahead of time by choosing which fields you want and selecting the

ά!ƎƎǊŜƎŀǘŜ Řŀǘŀ ŦƻǊ ŀƭƭ ǾƛǎƛōƭŜ ŘƛƳŜƴǎƛƻƴǎέ ŎƘŜŎƪ ōƻȄ ƛƴ ¢ŀōƭŜŀǳ 5ŜǎƪǘƻǇΩǎ 9ȄǘǊŀŎǘ 5ŀǘŀ ŘƛŀƭƻƎ ōƻȄΦ

Alternatively, after doing your analysis and building your dashboard, when you are ready to publish, you

can go back into the Extract Data dialog box and click the button for Hide All Unused Fields. Then when

you extract the data, it will be the absolute minimum required to create the view.

Creating aggregate extracts is a very powerful technique when you have a large amount of base data but

you need to create summary views that query across the whole data set. For example, you might have a

billion records of detailed transaction data representing 10 years of sales and you want to start by

showing the overall 10 year sales trend. The query for this initial view would potentially be slow as it

needs to query across all billion rows. By creating an extract that is aggregated at the yearly level we can

23

reduce the query effort required at view time as we will only have 10 numbers in the extract. Of course

this is an oversimplified example ς in reality you would have more dimensions than just time but the

effect of significantly reducing the number of records that need to be queried at view time.

We can create quite sophisticated workbooks that have multiple levels of detail by creating multiple

aggregated extracts, each tuned to support a specific level of detail, or by combining aggregated extracts

with live connections. For example, you might have a set of initial summary views that use a highly

aggregated extract but when you drill to detail you use action filters from the summary views to another

sheet that connects via a live connection. This means ǘƘŀǘ ǘƘŜ ǎǳƳƳŀǊȅ ǾƛŜǿǎ ǿƛƭƭ ōŜ Ŧŀǎǘ ŀǎ ǘƘŜȅ ŘƻƴΩǘ

ƴŜŜŘ ǘƻ ǘǊŀǿƭ ƻǾŜǊ ǘƘŜ Ŧǳƭƭ ōŀǎŜ Řŀǘŀ ǎŜǘΣ ōǳǘ ŀƭǎƻ ǿŜ ŘƻƴΩǘ ƴŜŜŘ ǘƻ ŜȄǘǊŀŎǘ ŀƭƭ ǘƘŜ ōŀǎŜ Řŀǘŀ ǘƻ ǎǳǇǇƻǊǘ

the drill down actions. Also, the live connection will perform quickly because at the drill down level we

are only accessing a small set of records.

In this way, you can mix and match, and aggregate at different levels to resolve nearly any performance

issues so that get the results as fast as necessary. Since Tableau is efficient with memory, improving

performance this way is usually relatively easy and you can have multiple extracts running at the same

time.

Optimising extracts
Tableau Server not only optimises the physical columns that are in the database, but the additional

columns that are created in Tableau. These columns include the results of deterministic calculations,

such as string manipulations and concatenations, where the result is never going to change, as well as

groups and sets. The results of non-deterministic calculations, such as those that involve a parameter or

aggregations (such as sum or average) that are calculated at runtime, cannot be stored.

A user might refresh an extract after adding only two rows of data, and notice that the size of the

extract has jumped from 100 MB to 120 MB. This jump in size is due to optimisation creating additional

columns containing calculated field values, because it is cheaper to store data to disk than to recalculate

it every time that data is needed.

One thing to watch out for is if you are making duplicate copies of a connection to a data extract, you

ƴŜŜŘ ǘƻ ŜƴǎǳǊŜ ǘƘŀǘ ŀƭƭ ŎŀƭŎǳƭŀǘŜŘ ŦƛŜƭŘǎ ŜȄƛǎǘ ƛƴ ǘƘŜ ŎƻƴƴŜŎǘƛƻƴ ȅƻǳ ǎŜƭŜŎǘ ŦƻǊ ǘƘŜ άhǇǘƛƳƛȊŜέ ƻǊ

άwŜŦǊŜǎƘέ ƻǇǘƛƻƴǎΣ ƻǘƘŜǊǿƛǎŜ ¢ŀōƭŜŀǳ ǿƛƭƭ ƴƻǘ ƳŀǘŜǊƛŀƭƛǎŜ ŦƛŜƭŘǎ ǿƘƛŎƘ ƛǘ ǘƘƛƴƪǎ ŀǊŜ ǳƴǳǎŜŘΦ ! ƎƻƻŘ Ƙabit

is to define all calculated fields in the primary data source and copy them as necessary to the other

connections and then only ever refresh or optimise the extract from the primary data source.

Refreshing extracts
In Tableau Desktop, to refresh an extract you make a menu selection (Data menu > [your data source] >

Extract > Refresh), which updates the data and adds any new rows. But in Tableau Server, during or after

the publishing process, you can attach a schedule defined by an administrator to refresh the extract

automatically. The smallest schedule increment allowed is every 15 minutes; the schedule can be to

ǊŜŦǊŜǎƘ ŀǘ ǘƘŜ ǎŀƳŜ ǘƛƳŜ ŘŀƛƭȅΣ ǿŜŜƪƭȅΣ ŀƴŘ ǎƻ ƻƴΦ ¸ƻǳ Ŏŀƴ ǎŜǘ ǳǇ ŀ άƳƻǾƛƴƎ ǿƛƴŘƻǿέ ǘƻ Ŏƻƴǘƛƴǳŀƭƭȅ

refresh the data to just the most recent.

Note: If you want to refresh your data more often than every 15 minutes, you should consider

connecting to live data, or set up a synchronised report database.

24

You can choose two refresh schedules for a single extract:

¶ An incremental refresh just adds rows, and does not include changes to existing rows.

¶ A full refresh discards the current extract and regenerates a new one from scratch from the data

source.

What happens if the refresh takes longer than the increment?
If the refresh time for an extract takes longer than the increment then the intervening refreshes are

skipped. For example, the schedule is set to refresh the data every hour, but the amount of data is so

large that the refresh takes an hour and a half. Then:

¶ The first refresh starts at 1:00 and finishes at 2:30.

¶ The next refresh is schedule to start at 2:00 but because the first is still running it is skipped.

¶ The next refresh starts at 3:00 and finishes at 4:30.

Extract maintenance
The Maintenance screens show what Background tasks are currently running, as well as those that have

run for the past 12 hours. Colour coding is used to show the status of those tasks. The Maintenance

screens are available to administrators and, with the appropriate permissions, to some other users, who

can have permissions to initiate an ad hoc update to an extract. Also, for example, if a database is going

to load, you can set a trigger to initiate an extract after the database finishes loading.

You also can refresh a workbook incrementally or fully via the tabc md command line tool if you are using

Tableau Server or the Tableau.exe command line if you are using Tableau Desktop. If you have complex

scheduling requirements you can invoke this from an external scheduling tool such as the Windows Task

25

Scheduler. This approach is required if you want a refresh cycle that is shorter than the 15 minute

minimum allowed through the Tableau Server interface.

Finally, for users of Tableau Online, you can use the Tableau Online sync client to keep on-prem data

sources up-to-date via schedules defined on the Online service. You can find more information on this

utility here:

http://tabsoft.co/1fD1NXP

Data preparation
Tableau 9 introduces the ability to perform data preparation functions on data sources ς e.g. using the

data interpreter against Excel spreadsheets and using the Pivot function to reorient columns of data.

When working with large volumes of data these steps can be time consuming and it is recommended

that the output be written to a data extract.

http://tabsoft.co/1fD1NXP

26

Is it the query?
So you have reviewed the data connection and ensured it is following best practice. However your

performance is still poor. The next point of review is to understand the specific query (or more likely

queries) to ensure they are optimal.

Where can I find the queries?
In Tableau you can find the full query text by looking in the log file. The default location is

C: \ Users \ <username> \ Documents \ My Tableau Repository \ Logs \ log.txt . This file is quite verbose

and is written as JSON encoded text, but if you search for άbegin-queryέ or άend-queryέ you can find the

query string being passed to the data sourceΦ [ƻƻƪƛƴƎ ŀǘ ǘƘŜ άŜƴŘ-ǉǳŜǊȅέ ƭƻƎ ǊŜŎƻǊŘ ǿƛƭƭ ŀƭǎƻ ǎƘƻǿ ȅƻǳ

the time it took for the query to run and how many records were returned to Tableau:

{"ts":"2015 - 05- 24T12:25:41.226","pid":6460,"tid":"1674","sev":"info","req":" -

","sess":" - ","site":" - ","user":" - ","k":" endðquery ",

"v":{"protocol":"4308fb0","cols":4,"query":"SELECT

[DimProductCategory].[Produ ctCategoryName] AS [none:ProductCategoryName:nk], \ n

[DimProductSubcategory].[ProductSubcategoryName] AS

[none:ProductSubcategoryName:nk], \ n SUM(CAST(([FactSales].[ReturnQuantity]) as

BIGINT)) AS [sum:ReturnQuantity:ok], \ n SUM([FactSales].[SalesAmount]) AS

[sum:SalesAmount:ok] \ nFROM [dbo].[FactSales] [FactSales] \ n INNER JOIN

[dbo].[DimProduct] [DimProduct] ON ([FactSales].[ProductKey] =

[DimProduct].[ProductKey]) \ n INNER JOIN [dbo].[DimProductSubcategory]

[DimProductSubcategory] ON ([DimProduct].[Produc tSubcategoryKey] =

[DimProductSubcategory].[ProductSubcategoryKey]) \ n INNER JOIN

[dbo].[DimProductCategory] [DimProductCategory] ON

([DimProductSubcategory].[ProductCategoryKey] =

[DimProductCategory].[ProductCategoryKey]) \ nGROUP BY

[DimProductCategory].[ProductCategoryName], \ n

[DimProductSubcategory].[ProductSubcategoryName]", "rows":32 , "elapsed":0.951 }}

If you are looking on Tableau Server, the logs are in C: \ ProgramData \ Tableau \ Tableau

Server \ data \ tabsvc \ vizqlserver \ Logs .

Performance recordings
Another place to look to understand the performance of a workbook is the Performance Recorder

feature of Tableau Desktop and Server. You enable this feature under the Help menu:

27

Start performance recording, then open your workbook. Interact with it as if you were an end user and

when you feel you have gathered enough data go back in the help menu and stop recording. Another

Tableau Desktop window will open at this point with the data captured:

You can now identify the actions in the workbook that take the most time - for example in the above

image the selected query from the Timeline worksheet takes 30.66 seconds to complete. Clicking on the

bar shows the text of the query being executed.

You can use this information to identify those sections of a workbook that are the best candidates for

review - i.e. where can you get the best improvement for the time you spend? More information on

interpreting these recordings can be found in the following link:

 http://tabsoft.co/1RdF420

http://tabsoft.co/1RdF420

28

Other tools for performance analysis
There are some other 3rd party tools available that will help you identify the performance characteristics

of your workbooks. One option ƛǎ άtƻǿŜǊ ¢ƻƻƭǎ ŦƻǊ ¢ŀōƭŜŀǳέ ōȅ LƴǘŜǊǿƻǊƪǎ ǿƘƛŎƘ ƛƴŎƭǳŘŜs a

performance analyser that allows you to drill in and understand what sheets and queries are taking the

longest time:

Under the covers improvements
In Tableau 9.0 some of the biggest improvements to workbook efficiency and performance have been

made in the query engine ς i.e. how Tableau generates the queries required to render the

visualisation/dashboard design. Many of these improvements are invisible to the end user but it is

useful to understand them so you can ensure your workbooks take full advantage.

Data engine improvements
Tableau 9 includes significant performance improvements for queries against the Tableau data engine.

These improvements are achieved by taking advantage of technological advances in CPU technology.

Firstly, the Tableau 9 data engine will run queries faster by using multiple cores where possible. The data

engine can now run aggregations in parallel, splitting the work across multiple cores. By default, the

maximum degree of parallelism is (number of available logical processors) / 2. This means that query

operations on data extracts can run up to N times faster in Tableau 9 (where N is the number of cores in

the machine).

Secondly, the data engine will now use SIMD instructions to perform low-level operations such as plus,

minus, divide, min, max, sum, etc. on multiple data in parallel. This means that basic computations can

29

be performed more quickly. This improvement is only available on CPUs that support SSE 4.1 however

most modern Intel and AMD CPUs do.

So ς how can you take advantage of these improvements in Tableau 9? Simply use data extracts and run

your workbooks on a workstation with a modern CPU that has multiple cores.

Query parallelism
Tableau 9 takes advantage of the ability of source databases to execute multiple queries at the same

time. Consider the following dashboard:

When this workbook is opened in Tableau 8.3, you can see that the three queries are run serially taking

4.4 seconds in total:

Opening the same workbook in Tableau 9 shows different behaviour:

The queries in Tableau 9 now run in parallel taking a total of 3.3 seconds ς an improvement of 25%. By

ǘŀƪƛƴƎ ŀŘǾŀƴǘŀƎŜ ƻŦ ǘƘŜ Řŀǘŀ ǎƻǳǊŎŜΩǎ ŀōƛƭƛǘȅ ǘƻ ƘŀƴŘƭŜ ƳǳƭǘƛǇƭŜ ǉǳŜǊƛŜǎ ŀǘ ǘƘŜ ǎŀƳŜ ǘƛƳŜ ǿŜ Ŏŀƴ ǊŜŘǳŎŜ

the time it takes to render a dashboard with multiple elements.

The level of query parallelism varies between source systems as some platforms handle simultaneous

queries better than others. The default is to run a maximum of 16 parallel queries for all data sources

apart from text and Excel files (limit is 1 query at a time), creating SAP BW extracts (limit is 1 query at a

time) and Amazon Redshift (limit is 2 queries at a time).

In most cases changing these settings is not necessary and you should leave them at their default

settings, however if you have a specific need to control the degree of parallelism this can be set as:

30

¶ a global limit on the number of parallel queries for Tableau Server;

¶ limits for a particular data source type, such as SQL Server;

¶ limits for a particular data source type on a specific server; or

¶ limits for a particular data source type, on a specific server, when connecting to a specific

database.

These settings are managed by an xml file named connection-configs.xml which you create and save in

the app folder on Windows (C: \ Program Files \ Tableau \ Tableau 9.0) and Mac (right click the App,

click Show Package Contents, and place the file here) for Desktop or in the config directory in the

vizqlserver folder (for example:

C: \ ProgramData \ Tableau \ TableauServer \ data \ tabsvc \ config \ viz qlserver) for Server. You must

copy this configuration file to all the vizqlserver configuration directories in all worker machines.

You can read more about configuring parallel queries, including the syntax of the connection-configs.xml

file, here:

 http://tabsoft.co/1HAlztD

Query batching
You can also see that in Tableau 9 we only executed two queries instead of three. By batching the

queries together, Tableau 9 can eliminate redundant queries. Tableau will sort the queries to run the

most complex queries first in the hope that subsequent queries can be serviced from the result cache. In

this example, because the timeline includes Product Category and because the SUM aggregation of Sales

Amount is fully additive, the data for the Category chart can be resolved from the query cache and

ŘƻŜǎƴΩǘ ǊŜǉǳƛǊŜ ŀ Ƙƛǘ ƻƴ ǘƘŜ Řŀǘŀ ǎƻǳǊŎŜ.

Prior to Tableau 9 it was possible to have less complex queries serviced from the query cache however

the order in which Tableau ran the queries was determined a) by the alphabetical name order of the

sheets on the dashboard (in Tableau 8.2) or by the order in which the dashboard designer placed the

sheet objects on the dashboard (in Tableau 8.0 and 8.1).

Query fusion
²ƘŀǘΩǎ ōŜǘǘŜǊ ǘƘŀƴ Ǌǳƴƴƛƴg queries in parallel? Running fewer queries! In Tableau 9, the query engine

will look for queries that are at the same level of detail (i.e. they are specified by the same set of

dimensions) and will collapse them into a single query that returns all requested measures. Consider the

following dashboard:

http://tabsoft.co/1HAlztD

31

As you can see, this dashboard contains 4 sheets ς each showing a different measure over time. They all

have the same level of detail as they are showing the data using a continuous month. Running this

dashboard in Tableau 8.3 results in 4 queries being run ς see the following performance recording:

Each query is fetching a single measure:

SELECT DATEADD(month, DATEDIFF(month, 0,

CAST(FLOOR(CAST(CAST([DimDate].[Datekey] as datetime) as float)) as datetime)),

0) AS [tmn:Datekey:ok],

 SUM([FactSales].[DiscountAmount]) AS [sum:DiscountAmount:ok]

FROM [dbo].[FactSales] [FactSales]

 INNER JOIN [dbo].[DimDate] [DimDate] ON ([FactSales].[DateKey] =

[DimDate].[Datekey])

GROUP BY DATEADD(month, DATEDIFF(m onth, 0,

CAST(FLOOR(CAST(CAST([DimDate].[Datekey] as datetim e) as float)) as datetime)),

0)

The same workbook opened in Tableau 9 produces a very different result:

Only a single query is run, returning all of the requested measures:

SELECT DATEADD(month, DATEDIFF(month, 0,

CAST(FLOOR(CAST(CAST([FactSales].[DateKey] as datetime) as float)) as

datetime)), 0) AS [tmn:Datekey:ok],

 AVG(cast([FactSales].[SalesAmount] as float)) AS [avg:SalesAmount:ok],

 SUM([FactSales].[DiscountAmount]) AS [sum:DiscountAmou nt:ok],

 SUM(CAST(1 as BIGINT)) AS [sum:Number of Records:ok],

 SUM([FactSales].[SalesAmount]) AS [sum:SalesAmount:ok]

32

FROM [dbo].[FactSales] [FactSales]

GROUP BY DATEADD(month, DATEDIFF(month, 0,

CAST(FLOOR(CAST(CAST([FactSales].[DateKey] as datetim e) a s float)) as

datetime)), 0)

As you can see, query fusion can improve the overall performance significantly ς in this example the

query time was reduced by ~45%, from 3.5 to 1.9 seconds. Where possible, consider setting the same

level of detail for multiple sheets on a dashboard.

Caching
What is better than running fewer queries? Running no queries at all! While Tableau has incorporated

caching features in the past, Tableau 9 introduces an external query cache for both Tableau Desktop and

Tableau Server which can significantly reduce the number of queries that need to be run on the

underlying data source.

Desktop
Whenever Tableau 9 uses a file-based data source (data extracts, Excel, Access, text files, but not

statistical files) each query generated also generates a key-hash value that is unique for that particular

query string and data source combination. We use this key-hash value as a lookup into the external

query cache to determine if we have cached results we can use. If we find a hit in the cache, we will

simply load the data from there. You can see this activity in the log file:

{"ts":"2015 - 05- 25T17:25:18.146","pid":2472,"tid":"2d14","sev":"info","req":" -

","sess":" - ","site":" - ","user":" - ", "k":"ec - load" ,

"v":{ "key - hash":"395207117" , "outcome":"hi t" ,"key - size -

b":"1928","cns":"NativeQueryResultsV1","elapsed - ms":"2","value - size -

b":"2092806"}}

If we miss the cache, we hit the underlying data source and write the results into the query cache:

{"ts":"2015 - 05- 25T17:24:10.280","pid":3784,"tid":"1224","se v":"info","req":" -

","sess":" - ","site":" - ","user":" - ", "k":"ec - store" ,"v":{

"key - hash":"1319376522" , "outcome":"done" ,"key - size -

b":"944","cns":"NativeQueryResultsV1","elapsed - ms":"11","load - time -

ms":"87","value - size - b":"1770608","lower - bound - ms":"20"}}

A key difference between this external cache and the caching in previous versions of Tableau is that the

external cache data is included when the file is saved as a packaged workbook. This allows Tableau to

rapidly render the initial view of the workbook while it continues to unpack the larger data source file in

the background. For an end user, this dramatically improves the responsiveness of opening the

workbook. Note that if the cache data is > 10% the size of the source data file then it is not included.

Additionally, the external cache in Tableau 9 is persistent. That means the cache results are retained

between sessions in Tableau Desktop so if you use a file data source, restart Tableau Desktop and use it

again you will still benefit from the cache.

The external cache is stored in %LOCALAPPDATA%\ Tableau \ Caching on Windows and

~/Library/Caches/com.tableau/ on Mac. By default it is limited to 500MB in total, and it will be

invalidated if the user forces a refresh of the data source (e.g. pressing F5, R).

33

Note that the external query cache is not used if your visualisation uses relative date filters, or if you are

using user filters.

Server
The query cache in Tableau Server 9 has been significantly enhanced over previous versions. Previously,

the query cache in Tableau Server was local to each VizQL instance:

Now in addition to the local VizQL caches there is an external query cache that is shared ς not just across

all VizQL instances but across ALL processes that access the underlying data source. A new service called

the Cache Server now manages the external cache for all service instances across the cluster:

This change significantly increases the effectiveness of the cache, especially in deployments where there

are multiple VizQL instances. The VizQL Server will check its local cache ς if it misses, it will check the

Cache Server to see if the results are available from a query run elsewhere. Another important change

the Cache Server brings is that the external cache is now persistent. Previously the contents of the cache

were volatile and were lost whenever the VizQL instance was restarted. Now the cache contents remain

between instantiations of the services.

Finally, a useful side-effect of the cache being shared is we can now realistically warm the cache for

workbooks that we know are slow on first view by running a subscription for the workbook. Doing this

early in the morning before your interactive users arrive at work will ensure that the workbook is run

and the query results loaded into the cache. The cache will then be hit when the users view the

workbook, making the initial view time fast.

